

Reprocessing Study Nicholas Singer

nsinger@eos.hitc.com

31 October 1995

Overview

Meeting reprocessing requirements is a significant driver of hardware purchases and designs:

- CPU power required
- Data set organization within archive (on physical media)
- Archive needs (volume-driven vs. transaction-driven)
- Communications and I/O bandwidth requirements
- Error detection and control approach

We'll cover

- How Do We Characterize Reprocessing?
 - What kind and quantity of processing it entails
 - What "Reprocess at 2x rate" might mean
- Planned Modeling Studies

ECS Context

- Data Server
- Networks
- Processors

Requirements for Reprocessing

EOSD1040: "ECS shall provide sufficient capacity to permit reprocessing of all EOS science data at twice the incoming data rate at a minimum, concurrently with processing of new data."

August 1995 *Technical Baseline for the ECS Project*, Attachment L, provides a phasing of required processing capacities, relative to launch. For epoch k, 3Q99, this is an additional 1x for AM-1 instruments, an additional 2x for TRMM instruments.

Problem—This doesn't necessarily match the future reprocessing needs of the instrument teams.

Problem—Uncertainties about reprocessing paradigms and reprocessing frequencies lead to large uncertainties in the hardware requirements.

Approaches to Quantifying Capacities for Reprocessing

Basic: Take capacities required to meet near-peak* 1x requirements for current processing and multiply them by 2.

Better: Model reprocessing loads (@1x or 2x current) mixed with current processing loads; give reprocessing a lower priority than current processing; calculate required capacities.

Best: Use reprocessing plans from instrument teams to model reprocessing load; add 1x current load; model dynamically.

* "Near-peak requirements" means capacity needed to process peak loads within time period allowed (e.g., 24 hours for Levels 1-3.)

Comparison of 1x "Push" Processing Requirements for LaRC (Nominal MFLOPS)

August 1995 Baseline; Epoch k (3Q99)	Average 1x (Static)	Busy-Day 1x (Static)	Near-Peak 1x (Dynamic)	Double [Triple for TRMM] Near-Peak 1x	Near-Peak 1x + Average 1x [+ another 1x for TRMM]
CERES TRMM	3,071	3,298	4,320	12,960	11,520
CERES AM	6,825	7,423	8,640	17,280	15,840
MISR	13,644	13,645	14,400	28,800	28,800
MOPITT	26	27	<1 processor	<1 processor	<1 processor

Sizing is rounded up to the next pair of 720 MFLOPS processors.

PGS – Archive Traffic for Reprocessing Paradigms

PGS – Archive Traffic for Reprocessing Paradigm

Individual Product

m = Number of Level 3 data sets

Effects of Reprocessing Paradigms on LAN Flows

Relative sustained Archive-to-PGS LAN bandwidth required to reprocess 1 day in 1 day

	Head of Chain	Level Contem- poraneous	Individual Product
LaRC TRMM	1.0	1.9	3.2
LaRC AM-1	19.5 *1.0	56.3 *2.9	155.1 *8.0

^{*} Renormalized numbers

Theoretical Models of Reprocessing Frequency

Constant Interval – The period between reprocessings is constant

• Data set will be reprocessed N times each year.

Linear Interval – Interval between reprocessings increases at fixed rate

• Interval determined by time since launch

Constant Decay – Interval between reprocessings increases at variable rate

Interval determined by algorithm delivery number

Logistics Model (B. Barkstrom)

Reprocessing load in first campaign derived from logistic equation

Other models are possible, but were not examined

Since reprocessing drivers are complex, behavior can be complex

Summary of Reprocessing Frequency Models

	Hardware Needs	Reprocessing Interval	Comments
Constant Interval	Increasing	Constant	
Linear Interval	Constant	Increasing	Fixed Resources
Constant Decay	Compromise (Increasing)	Compromise (Increasing)	Increasing Knowledge

Current Status

Status

- IDR modeling assumes head-of-chain reprocessing paradigm
- 2x can be estimated as 1x peak + 1x average
- 3x can be estimated as 1x peak + 2*(1x average)

Critical Decisions

- With AHWGP and instrument teams, decide how to quantify the 2x requirement
 - Reprocessing paradigm(s)
 - Reprocessing frequency

Next Steps

- Validate reprocessing requirements with AHWGP, instrument teams
- Model accordingly for CDR

Planned Modeling Studies

In process now, making model runs to contrast the following assumptions (for Release B, Epoch k):

- Double the near-peak processing requirements for 1x
- Take the near-peak dynamic processing requirements and add 1x average (static) processing requirements
- Using the head-of-chain paradigm in the dynamic model, double the frequency and halve the coverage of each product/process and calculate near-peak processing requirements
- Do the same, but let one instantiation have high priority ("Current processing") and one with low priority ("Reprocessing")
- Using the head-of-chain paradigm in the dynamic model, create two copies of L1-L4 processing. Let one copy have high priority ("Current processing") and one have low priority ("Reprocessing")

In the future, contrast with

 Explicit, time-phased reprocessing scenarios from the instrument teams (paradigms other than head-of-chain)

Summary

Reprocessing assumptions are a significant driver of hardware capacity requirements

Different forms of reprocessing have different effects on networks, data server, etc.

The basic approach of multiplying 1x near-peak processing capacities by a factor does not properly account for the effects of different reprocessing paradigms